Voltage-dependent block of N-methyl-D-aspartate receptors by dopamine D1 receptor ligands.
نویسندگان
چکیده
Accumulating evidence indicates that dopamine and D1 receptor ligands modulate N-methyl D-aspartate (NMDA) receptors through a variety of D1 receptor-dependent mechanisms. In this study, we reveal a distinct D1 receptor-independent mechanism by which NMDA receptors are modulated. Using the human embryonic kidney (HEK) cell recombinant system and dissociated neurons, we have discovered that dopamine and several D1 ligands act as voltage-dependent, open-channel blockers for NMDA receptors, regardless of whether they are agonists or antagonists for D1 receptors. Analysis of structural and functional relationships of D1 ligands revealed the elements that are critical for their binding to NMDA receptors. Furthermore, using D1 receptor knockout mice, we verified that this channel-blocking effect was independent of D1 receptors. Finally, we demonstrated that D1 ligands functionally interact with Mg(2+) block through multiple sites, implying a possible role of the direct channel block under physiological conditions. Our results suggest that the direct inhibition of NMDA receptors by dopamine D1 receptor ligands is due to the channel pore block rather than receptor-receptor interactions.
منابع مشابه
Dopaminergic modulation of NMDA-induced whole cell currents in neostriatal neurons in slices: contribution of calcium conductances.
The present experiments were designed to examine dopamine (DA) modulation of whole cell currents mediated by activation of N-methyl-D-aspartate (NMDA) receptors in visualized neostriatal neurons in slices. First, we assessed the ability of DA, D1 and D2 receptor agonists to modulate membrane currents induced by activation of NMDA receptors. The results of these experiments demonstrated that DA ...
متن کاملThe effect of morphine dependence on expression of hippocampal N-methyl-D-aspartate receptor subunits in male rats
Introduction: N-methyl-D-aspartate (NMDA) receptors play a pivotal role in the development of tolerance and physical dependence to opiates. Activation of NMDA receptors involves the induction of long term potentiation (LTP) in hippocampus. Our previous study suggested that chronic oral administration of morphine enhanced NMDA dependent LTP in the CA1 area of hippocampal slices of rats. The p...
متن کاملThe Role of Dopamine D1 and D3 Receptors in N-Methyl-D-Aspartate (NMDA)/GlycineB Site-Regulated Complex Cognitive Behaviors following Repeated Morphine Administration
Background Opiate addiction is associated with complex cognitive impairment, which contributes to the development of compulsive drug use and relapses. Dopamine and N-methyl-D-aspartate receptors play critical roles in opiate-induced cognitive deficits. However, the roles of D1 and D3 receptors in the N-methyl-D-aspartate/glycineB receptor-regulated cognitive behaviors induced by morphine remain...
متن کاملDopamine enhancement of NMDA currents in dissociated medium-sized striatal neurons: role of D1 receptors and DARPP-32.
Dopamine (DA), via activation of D1 receptors, enhances N-methyl-D-aspartate (NMDA)-evoked responses in striatal neurons. The present investigation examined further the properties of this enhancement and the potential mechanisms by which this enhancement might be effected. Dissociated medium-sized striatal neurons were obtained from intact rats and mice or mutant mice lacking the DA and cyclic ...
متن کاملInteraction of dopamine D1 and NMDA receptors mediates acute clozapine potentiation of glutamate EPSPs in rat prefrontal cortex.
The atypical antipsychotic drug clozapine effectively alleviates both negative and positive symptoms of schizophrenia via unclear cellular mechanisms. Clozapine may modulate both glutamatergic and dopaminergic transmission in the prefrontal cortex (PFC) to achieve part of its therapeutic actions. Using whole cell patch-clamp techniques, current-clamp recordings in layers V-VI pyramidal neurons ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 70 5 شماره
صفحات -
تاریخ انتشار 2006